Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein kinase C eta is activated in reactive astrocytes of an Alzheimer's disease mouse model: Evidence for its immunoregulatory function in primary astrocytes.

Identifieur interne : 000066 ( Main/Exploration ); précédent : 000065; suivant : 000067

Protein kinase C eta is activated in reactive astrocytes of an Alzheimer's disease mouse model: Evidence for its immunoregulatory function in primary astrocytes.

Auteurs : Amitha Muraleedharan [Israël] ; Noa Rotem-Dai [Israël] ; Itai Strominger [Israël] ; Nikhil Ponnoor Anto [Israël] ; Noah Isakov [Israël] ; Alon Monsonego [Israël] ; Etta Livneh [Israël]

Source :

RBID : pubmed:33068318

Abstract

Alzheimer's disease (AD) is the primary cause of age-related dementia. Pathologically, AD is characterized by synaptic loss, the accumulation of β-amyloid peptides and neurofibrillary tangles, glial activation, and neuroinflammation. Whereas extensive studies focused on neurons and activation of microglia in AD, the role of astrocytes has not been well-characterized. Protein kinase C (PKC) was also implicated in AD; however, its role in astrocyte activation was not elucidated. Using the 5XFAD mouse model of AD, we show that PKC-eta (PKCη), an astrocyte-specific stress-activated and anti-apoptotic kinase, plays a role in reactive astrocytes. We demonstrate that PKCη staining is highly enriched in cortical astrocytes in a disease-dependent manner and in the vicinity of amyloid-β peptides plaques. Moreover, activation of PKCη, as indicated by its increased phosphorylation levels, is exhibited mainly in cortical astrocytes derived from adult 5XFAD mice. PKCη activation was associated with elevated levels of reactive astrocytic markers and upregulation of the pro-inflammatory cytokine interleukin 6 (IL-6) compared to littermate controls. Notably, inhibiting the kinase activity of PKCη in 5XFAD astrocyte cultures markedly increased the levels of secreted IL-6-a phenomenon that was also observed in wild-type astrocytes stimulated by inflammatory cytokines (e.g., TNFα, IL-1). Similar increase in the release of IL-6 was also observed upon inhibition of either the mammalian target of rapamycin (mTOR) or the protein phosphatase 2A (PP2A). Our findings suggest that the mTOR-PKCη-PP2A signaling cascade functions as a negative feedback loop of NF-κB-induced IL-6 release in astrocytes. Thus, we identify PKCη as a regulator of neuroinflammation in AD.

DOI: 10.1002/glia.23921
PubMed: 33068318


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein kinase C eta is activated in reactive astrocytes of an Alzheimer's disease mouse model: Evidence for its immunoregulatory function in primary astrocytes.</title>
<author>
<name sortKey="Muraleedharan, Amitha" sort="Muraleedharan, Amitha" uniqKey="Muraleedharan A" first="Amitha" last="Muraleedharan">Amitha Muraleedharan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rotem Dai, Noa" sort="Rotem Dai, Noa" uniqKey="Rotem Dai N" first="Noa" last="Rotem-Dai">Noa Rotem-Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Strominger, Itai" sort="Strominger, Itai" uniqKey="Strominger I" first="Itai" last="Strominger">Itai Strominger</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anto, Nikhil Ponnoor" sort="Anto, Nikhil Ponnoor" uniqKey="Anto N" first="Nikhil Ponnoor" last="Anto">Nikhil Ponnoor Anto</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Isakov, Noah" sort="Isakov, Noah" uniqKey="Isakov N" first="Noah" last="Isakov">Noah Isakov</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monsonego, Alon" sort="Monsonego, Alon" uniqKey="Monsonego A" first="Alon" last="Monsonego">Alon Monsonego</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Livneh, Etta" sort="Livneh, Etta" uniqKey="Livneh E" first="Etta" last="Livneh">Etta Livneh</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33068318</idno>
<idno type="pmid">33068318</idno>
<idno type="doi">10.1002/glia.23921</idno>
<idno type="wicri:Area/Main/Corpus">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000011</idno>
<idno type="wicri:Area/Main/Curation">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000011</idno>
<idno type="wicri:Area/Main/Exploration">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein kinase C eta is activated in reactive astrocytes of an Alzheimer's disease mouse model: Evidence for its immunoregulatory function in primary astrocytes.</title>
<author>
<name sortKey="Muraleedharan, Amitha" sort="Muraleedharan, Amitha" uniqKey="Muraleedharan A" first="Amitha" last="Muraleedharan">Amitha Muraleedharan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rotem Dai, Noa" sort="Rotem Dai, Noa" uniqKey="Rotem Dai N" first="Noa" last="Rotem-Dai">Noa Rotem-Dai</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Strominger, Itai" sort="Strominger, Itai" uniqKey="Strominger I" first="Itai" last="Strominger">Itai Strominger</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anto, Nikhil Ponnoor" sort="Anto, Nikhil Ponnoor" uniqKey="Anto N" first="Nikhil Ponnoor" last="Anto">Nikhil Ponnoor Anto</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Isakov, Noah" sort="Isakov, Noah" uniqKey="Isakov N" first="Noah" last="Isakov">Noah Isakov</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monsonego, Alon" sort="Monsonego, Alon" uniqKey="Monsonego A" first="Alon" last="Monsonego">Alon Monsonego</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Livneh, Etta" sort="Livneh, Etta" uniqKey="Livneh E" first="Etta" last="Livneh">Etta Livneh</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva</wicri:regionArea>
<wicri:noRegion>Beer-Sheva</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Glia</title>
<idno type="eISSN">1098-1136</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alzheimer's disease (AD) is the primary cause of age-related dementia. Pathologically, AD is characterized by synaptic loss, the accumulation of β-amyloid peptides and neurofibrillary tangles, glial activation, and neuroinflammation. Whereas extensive studies focused on neurons and activation of microglia in AD, the role of astrocytes has not been well-characterized. Protein kinase C (PKC) was also implicated in AD; however, its role in astrocyte activation was not elucidated. Using the 5XFAD mouse model of AD, we show that PKC-eta (PKCη), an astrocyte-specific stress-activated and anti-apoptotic kinase, plays a role in reactive astrocytes. We demonstrate that PKCη staining is highly enriched in cortical astrocytes in a disease-dependent manner and in the vicinity of amyloid-β peptides plaques. Moreover, activation of PKCη, as indicated by its increased phosphorylation levels, is exhibited mainly in cortical astrocytes derived from adult 5XFAD mice. PKCη activation was associated with elevated levels of reactive astrocytic markers and upregulation of the pro-inflammatory cytokine interleukin 6 (IL-6) compared to littermate controls. Notably, inhibiting the kinase activity of PKCη in 5XFAD astrocyte cultures markedly increased the levels of secreted IL-6-a phenomenon that was also observed in wild-type astrocytes stimulated by inflammatory cytokines (e.g., TNFα, IL-1). Similar increase in the release of IL-6 was also observed upon inhibition of either the mammalian target of rapamycin (mTOR) or the protein phosphatase 2A (PP2A). Our findings suggest that the mTOR-PKCη-PP2A signaling cascade functions as a negative feedback loop of NF-κB-induced IL-6 release in astrocytes. Thus, we identify PKCη as a regulator of neuroinflammation in AD.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33068318</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-1136</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Glia</Title>
<ISOAbbreviation>Glia</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein kinase C eta is activated in reactive astrocytes of an Alzheimer's disease mouse model: Evidence for its immunoregulatory function in primary astrocytes.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/glia.23921</ELocationID>
<Abstract>
<AbstractText>Alzheimer's disease (AD) is the primary cause of age-related dementia. Pathologically, AD is characterized by synaptic loss, the accumulation of β-amyloid peptides and neurofibrillary tangles, glial activation, and neuroinflammation. Whereas extensive studies focused on neurons and activation of microglia in AD, the role of astrocytes has not been well-characterized. Protein kinase C (PKC) was also implicated in AD; however, its role in astrocyte activation was not elucidated. Using the 5XFAD mouse model of AD, we show that PKC-eta (PKCη), an astrocyte-specific stress-activated and anti-apoptotic kinase, plays a role in reactive astrocytes. We demonstrate that PKCη staining is highly enriched in cortical astrocytes in a disease-dependent manner and in the vicinity of amyloid-β peptides plaques. Moreover, activation of PKCη, as indicated by its increased phosphorylation levels, is exhibited mainly in cortical astrocytes derived from adult 5XFAD mice. PKCη activation was associated with elevated levels of reactive astrocytic markers and upregulation of the pro-inflammatory cytokine interleukin 6 (IL-6) compared to littermate controls. Notably, inhibiting the kinase activity of PKCη in 5XFAD astrocyte cultures markedly increased the levels of secreted IL-6-a phenomenon that was also observed in wild-type astrocytes stimulated by inflammatory cytokines (e.g., TNFα, IL-1). Similar increase in the release of IL-6 was also observed upon inhibition of either the mammalian target of rapamycin (mTOR) or the protein phosphatase 2A (PP2A). Our findings suggest that the mTOR-PKCη-PP2A signaling cascade functions as a negative feedback loop of NF-κB-induced IL-6 release in astrocytes. Thus, we identify PKCη as a regulator of neuroinflammation in AD.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals LLC.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muraleedharan</LastName>
<ForeName>Amitha</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5825-6514</Identifier>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rotem-Dai</LastName>
<ForeName>Noa</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Strominger</LastName>
<ForeName>Itai</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anto</LastName>
<ForeName>Nikhil Ponnoor</ForeName>
<Initials>NP</Initials>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Isakov</LastName>
<ForeName>Noah</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monsonego</LastName>
<ForeName>Alon</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Livneh</LastName>
<ForeName>Etta</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1864/16</GrantID>
<Agency>Israel Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>684/14</GrantID>
<Agency>Israel Science Foundation</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Litwin and Gural Family foundations</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Glia</MedlineTA>
<NlmUniqueID>8806785</NlmUniqueID>
<ISSNLinking>0894-1491</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alzheimer's disease</Keyword>
<Keyword MajorTopicYN="N">IL-6</Keyword>
<Keyword MajorTopicYN="N">PKCη</Keyword>
<Keyword MajorTopicYN="N">astrocytes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>12</Hour>
<Minute>6</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33068318</ArticleId>
<ArticleId IdType="doi">10.1002/glia.23921</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Alfonso, S. I., Callender, J. A., Hooli, B., Antal, C. E., Mullin, K., Sherman, M. A., … Malinow, R. (2016). Gain-of-function mutations in protein kinase Calpha (PKCalpha) may promote synaptic defects in Alzheimer's disease. Science Signaling, 9(427), ra47. https://doi.org/10.1126/scisignal.aaf6209</Citation>
</Reference>
<Reference>
<Citation>Alkon, D. L., Sun, M. K., & Nelson, T. J. (2007). PKC signaling deficits: A mechanistic hypothesis for the origins of Alzheimer's disease. Trends in Pharmacological Sciences, 28(2), 51-60. https://doi.org/10.1016/j.tips.2006.12.002</Citation>
</Reference>
<Reference>
<Citation>Amram, S., Iram, T., Lazdon, E., Vassar, R., Porath, I. B., & Frenkel, D. (2019). Astrocyte senescence in an Alzheimer's disease mouse model is mediated by TGF-β1 and results in neurotoxicity. Cold Spring Harbor Laboratory bioRxiv.</Citation>
</Reference>
<Reference>
<Citation>Antal, C. E., & Newton, A. C. (2014). Tuning the signalling output of protein kinase C. Biochemical Society Transactions, 42(6), 1477-1483. https://doi.org/10.1042/BST20140172</Citation>
</Reference>
<Reference>
<Citation>Antal, C. E., Violin, J. D., Kunkel, M. T., Skovso, S., & Newton, A. C. (2014). Intramolecular conformational changes optimize protein kinase C signaling. Chemistry & Biology, 21(4), 459-469. https://doi.org/10.1016/j.chembiol.2014.02.008</Citation>
</Reference>
<Reference>
<Citation>Apelt, J., & Schliebs, R. (2001). Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Research, 894(1), 21-30.</Citation>
</Reference>
<Reference>
<Citation>Bacher, N., Zisman, Y., Berent, E., & Livneh, E. (1991). Isolation and characterization of PKC-L, a new member of the protein kinase C-related gene family specifically expressed in lung, skin, and heart. Molecular and Cellular Biology, 11(1), 126-133.</Citation>
</Reference>
<Reference>
<Citation>Batarseh, Y. S., Duong, Q. V., Mousa, Y. M., Al Rihani, S. B., Elfakhri, K., & Kaddoumi, A. (2016). Amyloid-beta and astrocytes interplay in amyloid-beta related disorders. International Journal of Molecular Sciences, 17(3), 338. https://doi.org/10.3390/ijms17030338</Citation>
</Reference>
<Reference>
<Citation>Ben Haim, L., Carrillo-de Sauvage, M. A., Ceyzeriat, K., & Escartin, C. (2015). Elusive roles for reactive astrocytes in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 9, 278. https://doi.org/10.3389/fncel.2015.00278</Citation>
</Reference>
<Reference>
<Citation>Ben Haim, L., Ceyzeriat, K., Carrillo-de Sauvage, M. A., Aubry, F., Auregan, G., Guillermier, M., … Escartin, C. (2015). The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. The Journal of Neuroscience, 35(6), 2817-2829. https://doi.org/10.1523/JNEUROSCI.3516-14.2015</Citation>
</Reference>
<Reference>
<Citation>Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., … Torres, C. (2012). Astrocyte senescence as a component of Alzheimer's disease. PLoS One, 7(9), e45069. https://doi.org/10.1371/journal.pone.0045069</Citation>
</Reference>
<Reference>
<Citation>Born, H. A., Kim, J. Y., Savjani, R. R., Das, P., Dabaghian, Y. A., Guo, Q., … Jankowsky, J. L. (2014). Genetic suppression of transgenic APP rescues hypersynchronous network activity in a mouse model of Alzheimer's disease. The Journal of Neuroscience, 34(11), 3826-3840. https://doi.org/10.1523/JNEUROSCI.5171-13.2014</Citation>
</Reference>
<Reference>
<Citation>Borovcanin, M. M., Jovanovic, I., Radosavljevic, G., Pantic, J., Minic Janicijevic, S., Arsenijevic, N., & Lukic, M. L. (2017). Interleukin-6 in schizophrenia-is there a therapeutic relevance? Frontiers in Psychiatry, 8, 221. https://doi.org/10.3389/fpsyt.2017.00221</Citation>
</Reference>
<Reference>
<Citation>Brietzke, E., Moreira, C. L., Toniolo, R. A., & Lafer, B. (2011). Clinical correlates of eating disorder comorbidity in women with bipolar disorder type I. Journal of Affective Disorders, 130(1-2), 162-165. https://doi.org/10.1016/j.jad.2010.10.020</Citation>
</Reference>
<Reference>
<Citation>Burda, J. E., & Sofroniew, M. V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 81(2), 229-248. https://doi.org/10.1016/j.neuron.2013.12.034</Citation>
</Reference>
<Reference>
<Citation>Bussian, T. J., Aziz, A., Meyer, C. F., Swenson, B. L., van Deursen, J. M., & Baker, D. J. (2018). Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 562(7728), 578-582. https://doi.org/10.1038/s41586-018-0543-y</Citation>
</Reference>
<Reference>
<Citation>Caccamo, A., de Pinto, V., Messina, A., Branca, C., & Oddo, S. (2014). Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer's disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. The Journal of Neuroscience, 34(23), 7988-7998. https://doi.org/10.1523/JNEUROSCI.0777-14.2014</Citation>
</Reference>
<Reference>
<Citation>Cai, T., Li, X., Ding, J., Luo, W., Li, J., & Huang, C. (2011). A cross-talk between NFAT and NF-kappaB pathways is crucial for nickel-induced COX-2 expression in Beas-2B cells. Current Cancer Drug Targets, 11(5), 548-559. https://doi.org/10.2174/156800911795656001</Citation>
</Reference>
<Reference>
<Citation>Callender, J. A., Yang, Y., Lorden, G., Stephenson, N. L., Jones, A. C., Brognard, J., & Newton, A. C. (2018). Protein kinase Calpha gain-of-function variant in Alzheimer's disease displays enhanced catalysis by a mechanism that evades down-regulation. Proceedings of the National Academy of Sciences of the United States of America, 115(24), E5497-E5505. https://doi.org/10.1073/pnas.1805046115</Citation>
</Reference>
<Reference>
<Citation>Carosi, J. M., & Sargeant, T. J. (2019). Rapamycin and Alzheimer disease: A double-edged sword? Autophagy, 15(8), 1460-1462. https://doi.org/10.1080/15548627.2019.1615823</Citation>
</Reference>
<Reference>
<Citation>Ceyzeriat, K., Ben Haim, L., Denizot, A., Pommier, D., Matos, M., Guillemaud, O., … Escartin, C. (2018). Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer's disease. Acta Neuropathologica Communications, 6(1), 104. https://doi.org/10.1186/s40478-018-0606-1</Citation>
</Reference>
<Reference>
<Citation>Chakrabarty, P., Jansen-West, K., Beccard, A., Ceballos-Diaz, C., Levites, Y., Verbeeck, C., … Das, P. (2010). Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: Evidence against inflammation as a driving force for amyloid deposition. The FASEB Journal, 24(2), 548-559. https://doi.org/10.1096/fj.09-141754</Citation>
</Reference>
<Reference>
<Citation>Chen, C. C., Wang, J. K., Chen, W. C., & Lin, S. B. (1998). Protein kinase C eta mediates lipopolysaccharide-induced nitric-oxide synthase expression in primary astrocytes. The Journal of Biological Chemistry, 273(31), 19424-19430.</Citation>
</Reference>
<Reference>
<Citation>Chinta, S. J., Woods, G., Demaria, M., Rane, A., Zou, Y., McQuade, A., … Andersen, J. K. (2018). Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease. Cell Reports, 22(4), 930-940. https://doi.org/10.1016/j.celrep.2017.12.092</Citation>
</Reference>
<Reference>
<Citation>Choi, S. S., Lee, H. J., Lim, I., Satoh, J., & Kim, S. U. (2014). Human astrocytes: Secretome profiles of cytokines and chemokines. PLoS One, 9(4), e92325. https://doi.org/10.1371/journal.pone.0092325</Citation>
</Reference>
<Reference>
<Citation>Codeluppi, S., Fernandez-Zafra, T., Sandor, K., Kjell, J., Liu, Q., Abrams, M., … Uhlen, P. (2014). Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS One, 9(3), e92649. https://doi.org/10.1371/journal.pone.0092649</Citation>
</Reference>
<Reference>
<Citation>Cohen, J., & Torres, C. (2019). Astrocyte senescence: Evidence and significance. Aging Cell, 18(3), e12937. https://doi.org/10.1111/acel.12937</Citation>
</Reference>
<Reference>
<Citation>Cohen, P. (2014). The TLR and IL-1 signalling network at a glance. Journal of Cell Science, 127(Pt 11), 2383-2390. https://doi.org/10.1242/jcs.149831</Citation>
</Reference>
<Reference>
<Citation>Colombo, E., & Farina, C. (2016). Astrocytes: Key regulators of Neuroinflammation. Trends in Immunology, 37(9), 608-620. https://doi.org/10.1016/j.it.2016.06.006</Citation>
</Reference>
<Reference>
<Citation>Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144</Citation>
</Reference>
<Reference>
<Citation>Csipo, T., Lipecz, A., Ashpole, N. M., Balasubramanian, P., & Tarantini, S. (2020). Astrocyte senescence contributes to cognitive decline. GeroScience, 42(1), 51-55. https://doi.org/10.1007/s11357-019-00140-9</Citation>
</Reference>
<Reference>
<Citation>Domenici, M. R., Paradisi, S., Sacchetti, B., Gaudi, S., Balduzzi, M., Bernardo, A., … Malchiodi-Albedi, F. (2002). The presence of astrocytes enhances beta amyloid-induced neurotoxicity in hippocampal cell cultures. Journal of Physiology, Paris, 96(3-4), 313-316.</Citation>
</Reference>
<Reference>
<Citation>Dresselhaus, E. C., & Meffert, M. K. (2019). Cellular specificity of NF-kappaB function in the nervous system. Frontiers in Immunology, 10, 1043. https://doi.org/10.3389/fimmu.2019.01043</Citation>
</Reference>
<Reference>
<Citation>Du, Y., Zhao, Y., Li, C., Zheng, Q., Tian, J., Li, Z., … Xu, H. (2018). Inhibition of PKCdelta reduces amyloid-beta levels and reverses Alzheimer disease phenotypes. The Journal of Experimental Medicine, 215(6), 1665-1677. https://doi.org/10.1084/jem.20171193</Citation>
</Reference>
<Reference>
<Citation>Ellis, A., & Bennett, D. L. (2013). Neuroinflammation and the generation of neuropathic pain. British Journal of Anaesthesia, 111(1), 26-37. https://doi.org/10.1093/bja/aet128</Citation>
</Reference>
<Reference>
<Citation>Erta, M., Quintana, A., & Hidalgo, J. (2012). Interleukin-6, a major cytokine in the central nervous system. International Journal of Biological Sciences, 8(9), 1254-1266. https://doi.org/10.7150/ijbs.4679</Citation>
</Reference>
<Reference>
<Citation>Fakhoury, M. (2018). Microglia and astrocytes in Alzheimer's disease: Implications for therapy. Current Neuropharmacology, 16(5), 508-518. https://doi.org/10.2174/1570159X15666170720095240</Citation>
</Reference>
<Reference>
<Citation>Fima, E., Shahaf, G., Hershko, T., Apte, R. N., & Livneh, E. (1999). Expression of PKCeta in NIH-3T3 cells promotes production of the pro-inflammatory cytokine interleukin-6. European Cytokine Network, 10(4), 491-500.</Citation>
</Reference>
<Reference>
<Citation>Frost, G. R., & Li, Y. M. (2017). The role of astrocytes in amyloid production and Alzheimer's disease. Open Biology, 7(12), 170228. https://doi.org/10.1098/rsob.170228</Citation>
</Reference>
<Reference>
<Citation>Furman, J. L., Sama, D. M., Gant, J. C., Beckett, T. L., Murphy, M. P., Bachstetter, A. D., … Norris, C. M. (2012). Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease. The Journal of Neuroscience, 32(46), 16129-16140. https://doi.org/10.1523/JNEUROSCI.2323-12.2012</Citation>
</Reference>
<Reference>
<Citation>Ghosh, K., & Capell, B. C. (2016). The senescence-associated secretory phenotype: Critical effector in skin cancer and aging. The Journal of Investigative Dermatology, 136(11), 2133-2139. https://doi.org/10.1016/j.jid.2016.06.621</Citation>
</Reference>
<Reference>
<Citation>Gonzalez-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sanchez, K., Ariza-Salamanca, D., & Mora-Munoz, L. (2017). Involvement of astrocytes in Alzheimer's disease from a Neuroinflammatory and oxidative stress perspective. Frontiers in Molecular Neuroscience, 10, 427. https://doi.org/10.3389/fnmol.2017.00427</Citation>
</Reference>
<Reference>
<Citation>Hammond, T. R., Marsh, S. E., & Stevens, B. (2019). Immune Signaling in Neurodegeneration. Immunity, 50(4), 955-974. https://doi.org/10.1016/j.immuni.2019.03.016</Citation>
</Reference>
<Reference>
<Citation>Han, S. S., Yun, H., Son, D. J., Tompkins, V. S., Peng, L., Chung, S. T., … Janz, S. (2010). NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Molecular Cancer, 9, 97. https://doi.org/10.1186/1476-4598-9-97</Citation>
</Reference>
<Reference>
<Citation>Han, X., Zhang, T., Liu, H., Mi, Y., & Gou, X. (2020). Astrocyte senescence and Alzheimer's disease: A review. Frontiers in Aging Neuroscience, 12, 148. https://doi.org/10.3389/fnagi.2020.00148</Citation>
</Reference>
<Reference>
<Citation>Heneka, M. T., O'Banion, M. K., Terwel, D., & Kummer, M. P. (2010). Neuroinflammatory processes in Alzheimer's disease. Journal of Neural Transmission (Vienna), 117(8), 919-947. https://doi.org/10.1007/s00702-010-0438-z</Citation>
</Reference>
<Reference>
<Citation>Hodes, G. E., Menard, C., & Russo, S. J. (2016). Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiology of Stress, 4, 15-22. https://doi.org/10.1016/j.ynstr.2016.03.003</Citation>
</Reference>
<Reference>
<Citation>Hur, J. Y., Frost, G. R., Wu, X., Crump, C., Pan, S. J., Wong, E., … Li, Y. M. (2020). The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer's disease. Nature. https://doi.org/10.1038/s41586-020-2681-2</Citation>
</Reference>
<Reference>
<Citation>Ikenoue, T., Inoki, K., Yang, Q., Zhou, X., & Guan, K. L. (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. The EMBO Journal, 27(14), 1919-1931. https://doi.org/10.1038/emboj.2008.119</Citation>
</Reference>
<Reference>
<Citation>Iram, T., Trudler, D., Kain, D., Kanner, S., Galron, R., Vassar, R., … Frenkel, D. (2016). Astrocytes from old Alzheimer's disease mice are impaired in Abeta uptake and in neuroprotection. Neurobiology of Disease, 96, 84-94. https://doi.org/10.1016/j.nbd.2016.08.001</Citation>
</Reference>
<Reference>
<Citation>Kaeberlein, M., & Galvan, V. (2019). Rapamycin and Alzheimer's disease: Time for a clinical trial? Science Translational Medicine, 11(476), eaar4289. https://doi.org/10.1126/scitranslmed.aar4289</Citation>
</Reference>
<Reference>
<Citation>Katsouri, L., Birch, A. M., Renziehausen, A. W. J., Zach, C., Aman, Y., Steeds, H., … Sastre, M. (2020). Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer's disease. Glia, 68(5), 1017-1030. https://doi.org/10.1002/glia.23759</Citation>
</Reference>
<Reference>
<Citation>Kuan, C. S., Yee, Y. H., See Too, W. C., & Few, L. L. (2014). Ets and GATA transcription factors play a critical role in PMA-mediated repression of the ckbeta promoter via the protein kinase C signaling pathway. PLoS One, 9(12), e113485. https://doi.org/10.1371/journal.pone.0113485</Citation>
</Reference>
<Reference>
<Citation>Lattke, M., Reichel, S. N., & Baumann, B. (2017). NF-kappaB-mediated astrocyte dysfunction initiates neurodegeneration. Oncotarget, 8(31), 50329-50330. https://doi.org/10.18632/oncotarget.18320</Citation>
</Reference>
<Reference>
<Citation>Lattke, M., Reichel, S. N., Magnutzki, A., Abaei, A., Rasche, V., Walther, P., … Baumann, B. (2017). Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Molecular Neurodegeneration, 12(1), 16. https://doi.org/10.1186/s13024-017-0157-0</Citation>
</Reference>
<Reference>
<Citation>Lee, J. E., & Han, P. L. (2013). An update of animal models of Alzheimer disease with a reevaluation of plaque depositions. Experimental Neurobiology, 22(2), 84-95. https://doi.org/10.5607/en.2013.22.2.84</Citation>
</Reference>
<Reference>
<Citation>Levy, N., Milikovsky, D. Z., Baranauskas, G., Vinogradov, E., David, Y., Ketzef, M., … Monsonego, A. (2015). Differential TGF-beta signaling in glial subsets underlies IL-6-mediated epileptogenesis in mice. Journal of Immunology, 195(4), 1713-1722. https://doi.org/10.4049/jimmunol.1401446</Citation>
</Reference>
<Reference>
<Citation>Li, S., Wang, L., Berman, M. A., Zhang, Y., & Dorf, M. E. (2006). RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-kappaB signaling. Molecular Cell, 24(4), 497-509. https://doi.org/10.1016/j.molcel.2006.10.015</Citation>
</Reference>
<Reference>
<Citation>Liddelow, S. A., & Barres, B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 46(6), 957-967. https://doi.org/10.1016/j.immuni.2017.06.006</Citation>
</Reference>
<Reference>
<Citation>Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., … Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481-487. https://doi.org/10.1038/nature21029</Citation>
</Reference>
<Reference>
<Citation>Limbad, C., Oron, T. R., Alimirah, F., Davalos, A. R., Tracy, T. E., Gan, L., … Campisi, J. (2020). Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS One, 15(1), e0227887. https://doi.org/10.1371/journal.pone.0227887</Citation>
</Reference>
<Reference>
<Citation>Liu, X. P., Zheng, H. Y., Qu, M., Zhang, Y., Cao, F. Y., Wang, Q., … Wang, J. Z. (2012). Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice. Glia, 60(9), 1279-1288. https://doi.org/10.1002/glia.22347</Citation>
</Reference>
<Reference>
<Citation>Livneh, E., & Fishman, D. D. (1997). Linking protein kinase C to cell-cycle control. European Journal of Biochemistry, 248(1), 1-9.</Citation>
</Reference>
<Reference>
<Citation>Lucke-Wold, B. P., Turner, R. C., Logsdon, A. F., Simpkins, J. W., Alkon, D. L., Smith, K. E., … Rosen, C. L. (2015). Common mechanisms of Alzheimer's disease and ischemic stroke: The role of protein kinase C in the progression of age-related neurodegeneration. Journal of Alzheimer's Disease, 43(3), 711-724. https://doi.org/10.3233/JAD-141422</Citation>
</Reference>
<Reference>
<Citation>Maarouf, C. L., Kokjohn, T. A., Whiteside, C. M., Macias, M. P., Kalback, W. M., Sabbagh, M. N., … Roher, A. E. (2013). Molecular differences and similarities between Alzheimer's disease and the 5XFAD transgenic mouse model of amyloidosis. Biochemistry Insights, 6, 1-10. https://doi.org/10.4137/BCI.S13025</Citation>
</Reference>
<Reference>
<Citation>Majumder, S., Richardson, A., Strong, R., & Oddo, S. (2011). Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One, 6(9), e25416. https://doi.org/10.1371/journal.pone.0025416</Citation>
</Reference>
<Reference>
<Citation>Martinez-Cue, C., & Rueda, N. (2020). Cellular senescence in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 14, 16. https://doi.org/10.3389/fncel.2020.00016</Citation>
</Reference>
<Reference>
<Citation>Milikovsky, D. Z., Ofer, J., Senatorov, V. V., Jr., Friedman, A. R., Prager, O., Sheintuch, L., … Friedman, A. (2019). Paroxysmal slow cortical activity in Alzheimer's disease and epilepsy is associated with blood-brain barrier dysfunction. Science Translational Medicine, 11(521), eaaw8954. https://doi.org/10.1126/scitranslmed.aaw8954</Citation>
</Reference>
<Reference>
<Citation>Mittal, K., Eremenko, E., Berner, O., Elyahu, Y., Strominger, I., Apelblat, D., … Monsonego, A. (2019). CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. iScience, 16, 298-311. https://doi.org/10.1016/j.isci.2019.05.039</Citation>
</Reference>
<Reference>
<Citation>Myung, N. H., Zhu, X., Kruman, I. I., Castellani, R. J., Petersen, R. B., Siedlak, S. L., … Lee, H. G. (2008). Evidence of DNA damage in Alzheimer disease: Phosphorylation of histone H2AX in astrocytes. Age (Dordrecht, Netherlands), 30(4), 209-215. https://doi.org/10.1007/s11357-008-9050-7</Citation>
</Reference>
<Reference>
<Citation>Newton, A. C. (1995). Protein kinase C: Structure, function, and regulation. The Journal of Biological Chemistry, 270(48), 28495-28498.</Citation>
</Reference>
<Reference>
<Citation>Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G., & Michikawa, M. (2011). Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. The Journal of Biological Chemistry, 286(20), 17536-17542. https://doi.org/10.1074/jbc.M111.225532</Citation>
</Reference>
<Reference>
<Citation>Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., … Vassar, R. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: Potential factors in amyloid plaque formation. The Journal of Neuroscience, 26(40), 10129-10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006</Citation>
</Reference>
<Reference>
<Citation>O'Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annual Review of Neuroscience, 34, 185-204. https://doi.org/10.1146/annurev-neuro-061010-113613</Citation>
</Reference>
<Reference>
<Citation>Oeckinghaus, A., Hayden, M. S., & Ghosh, S. (2011). Crosstalk in NF-kappaB signaling pathways. Nature Immunology, 12(8), 695-708. https://doi.org/10.1038/ni.2065</Citation>
</Reference>
<Reference>
<Citation>Osada, S., Mizuno, K., Saido, T. C., Akita, Y., Suzuki, K., Kuroki, T., & Ohno, S. (1990). A phorbol ester receptor/protein kinase, nPKC eta, a new member of the protein kinase C family predominantly expressed in lung and skin. The Journal of Biological Chemistry, 265(36), 22434-22440.</Citation>
</Reference>
<Reference>
<Citation>Pan, J., Ma, N., Yu, B., Zhang, W., & Wan, J. (2020). Transcriptomic profiling of microglia and astrocytes throughout aging. Journal of Neuroinflammation, 17(1), 97. https://doi.org/10.1186/s12974-020-01774-9</Citation>
</Reference>
<Reference>
<Citation>Perez-Nievas, B. G., & Serrano-Pozo, A. (2018). Deciphering the astrocyte reaction in Alzheimer's disease. Frontiers in Aging Neuroscience, 10, 114. https://doi.org/10.3389/fnagi.2018.00114</Citation>
</Reference>
<Reference>
<Citation>Prager, O., Kamintsky, L., Hasam-Henderson, L. A., Schoknecht, K., Wuntke, V., Papageorgiou, I., … Kovacs, R. (2019). Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction. Epilepsia, 60(2), 322-336. https://doi.org/10.1111/epi.14631</Citation>
</Reference>
<Reference>
<Citation>Quintanilla, R. A., Orellana, D. I., Gonzalez-Billault, C., & Maccioni, R. B. (2004). Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Experimental Cell Research, 295(1), 245-257. https://doi.org/10.1016/j.yexcr.2004.01.002</Citation>
</Reference>
<Reference>
<Citation>Raveh-Amit, H., Hai, N., Rotem-Dai, N., Shahaf, G., Gopas, J., & Livneh, E. (2011). Protein kinase Ceta activates NF-kappaB in response to camptothecin-induced DNA damage. Biochemical and Biophysical Research Communications, 412(2), 313-317. https://doi.org/10.1016/j.bbrc.2011.07.090</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-Arellano, J. J., Parpura, V., Zorec, R., & Verkhratsky, A. (2015). Astrocytes in physiological aging and Alzheimer's disease. Neuroscience, 323, 170-182. https://doi.org/10.1016/j.neuroscience.2015.01.007</Citation>
</Reference>
<Reference>
<Citation>Rossner, S., Mehlhorn, G., Schliebs, R., & Bigl, V. (2001). Increased neuronal and glial expression of protein kinase C isoforms in neocortex of transgenic Tg2576 mice with amyloid pathology. The European Journal of Neuroscience, 13(2), 269-278.</Citation>
</Reference>
<Reference>
<Citation>Rothaug, M., Becker-Pauly, C., & Rose-John, S. (2016). The role of interleukin-6 signaling in nervous tissue. Biochimica et Biophysica Acta, 1863(6 Pt A), 1218-1227. https://doi.org/10.1016/j.bbamcr.2016.03.018</Citation>
</Reference>
<Reference>
<Citation>Sama, M. A., Mathis, D. M., Furman, J. L., Abdul, H. M., Artiushin, I. A., Kraner, S. D., & Norris, C. M. (2008). Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. The Journal of Biological Chemistry, 283(32), 21953-21964. https://doi.org/10.1074/jbc.M800148200</Citation>
</Reference>
<Reference>
<Citation>Sarlus, H., & Heneka, M. T. (2017). Microglia in Alzheimer's disease. The Journal of Clinical Investigation, 127(9), 3240-3249. https://doi.org/10.1172/JCI90606</Citation>
</Reference>
<Reference>
<Citation>Scarisbrick, I. A., Radulovic, M., Burda, J. E., Larson, N., Blaber, S. I., Giannini, C., … Vandell, A. G. (2012). Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biological Chemistry, 393(5), 355-367. https://doi.org/10.1515/hsz-2011-0241</Citation>
</Reference>
<Reference>
<Citation>Shahaf, G., Rotem-Dai, N., Koifman, G., Raveh-Amit, H., Frost, S. A., & Livneh, E. (2012). PKCeta is a negative regulator of AKT inhibiting the IGF-I induced proliferation. Experimental Cell Research, 318(7), 789-799. https://doi.org/10.1016/j.yexcr.2012.01.018</Citation>
</Reference>
<Reference>
<Citation>Tramutola, A., Lanzillotta, C., Barone, E., Arena, A., Zuliani, I., Mosca, L., … Di Domenico, F. (2018). Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Translational Neurodegeneration, 7, 28. https://doi.org/10.1186/s40035-018-0133-9</Citation>
</Reference>
<Reference>
<Citation>Trindade, P., Loiola, E. C., Gasparotto, J., Ribeiro, C. T., Cardozo, P. L., Devalle, S., … Rehen, S. K. (2020). Short and long TNF-alpha exposure recapitulates canonical astrogliosis events in human-induced pluripotent stem cells-derived astrocytes. Glia, 68(7), 1396-1409. https://doi.org/10.1002/glia.23786</Citation>
</Reference>
<Reference>
<Citation>Van Wagoner, N. J., Oh, J. W., Repovic, P., & Benveniste, E. N. (1999). Interleukin-6 (IL-6) production by astrocytes: Autocrine regulation by IL-6 and the soluble IL-6 receptor. The Journal of Neuroscience, 19(13), 5236-5244.</Citation>
</Reference>
<Reference>
<Citation>Verheijen, J., & Sleegers, K. (2018). Understanding Alzheimer disease at the Interface between genetics and transcriptomics. Trends in Genetics, 34(6), 434-447. https://doi.org/10.1016/j.tig.2018.02.007</Citation>
</Reference>
<Reference>
<Citation>Verkhratsky, A., Olabarria, M., Noristani, H. N., Yeh, C. Y., & Rodriguez, J. J. (2010). Astrocytes in Alzheimer's disease. Neurotherapeutics, 7(4), 399-412. https://doi.org/10.1016/j.nurt.2010.05.017</Citation>
</Reference>
<Reference>
<Citation>Weichhart, T. (2018). mTOR as regulator of lifespan, aging, and cellular senescence: A mini-review. Gerontology, 64(2), 127-134. https://doi.org/10.1159/000484629</Citation>
</Reference>
<Reference>
<Citation>Wiese, S., Karus, M., & Faissner, A. (2012). Astrocytes as a source for extracellular matrix molecules and cytokines. Frontiers in Pharmacology, 3, 120. https://doi.org/10.3389/fphar.2012.00120</Citation>
</Reference>
<Reference>
<Citation>Xia, M. L., Xie, X. H., Ding, J. H., Du, R. H., & Hu, G. (2020). Astragaloside IV inhibits astrocyte senescence: Implication in Parkinson's disease. Journal of Neuroinflammation, 17(1), 105. https://doi.org/10.1186/s12974-020-01791-8</Citation>
</Reference>
<Reference>
<Citation>Zhang, L., Ma, P., Guan, Q., Meng, L., Su, L., Wang, L., … Ji, S. (2018). Protein phosphatase 2A regulates the p38 signaling pathway to affect the migration of astrocytes. Molecular Medicine Reports, 18(5), 4328-4334. https://doi.org/10.3892/mmr.2018.9425</Citation>
</Reference>
<Reference>
<Citation>Zhang, P., Kishimoto, Y., Grammatikakis, I., Gottimukkala, K., Cutler, R. G., Zhang, S., … Mattson, M. P. (2019). Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nature Neuroscience, 22(5), 719-728. https://doi.org/10.1038/s41593-019-0372-9</Citation>
</Reference>
<Reference>
<Citation>Zhang, S., Zhang, M., Cai, F., & Song, W. (2013). Biological function of Presenilin and its role in AD pathogenesis. Translational Neurodegeneration, 2(1), 15. https://doi.org/10.1186/2047-9158-2-15</Citation>
</Reference>
<Reference>
<Citation>Zurgil, U., Ben-Ari, A., Atias, K., Isakov, N., Apte, R., & Livneh, E. (2014). PKCeta promotes senescence induced by oxidative stress and chemotherapy. Cell Death & Disease, 5, e1531. https://doi.org/10.1038/cddis.2014.481</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Muraleedharan, Amitha" sort="Muraleedharan, Amitha" uniqKey="Muraleedharan A" first="Amitha" last="Muraleedharan">Amitha Muraleedharan</name>
</noRegion>
<name sortKey="Anto, Nikhil Ponnoor" sort="Anto, Nikhil Ponnoor" uniqKey="Anto N" first="Nikhil Ponnoor" last="Anto">Nikhil Ponnoor Anto</name>
<name sortKey="Isakov, Noah" sort="Isakov, Noah" uniqKey="Isakov N" first="Noah" last="Isakov">Noah Isakov</name>
<name sortKey="Livneh, Etta" sort="Livneh, Etta" uniqKey="Livneh E" first="Etta" last="Livneh">Etta Livneh</name>
<name sortKey="Monsonego, Alon" sort="Monsonego, Alon" uniqKey="Monsonego A" first="Alon" last="Monsonego">Alon Monsonego</name>
<name sortKey="Monsonego, Alon" sort="Monsonego, Alon" uniqKey="Monsonego A" first="Alon" last="Monsonego">Alon Monsonego</name>
<name sortKey="Muraleedharan, Amitha" sort="Muraleedharan, Amitha" uniqKey="Muraleedharan A" first="Amitha" last="Muraleedharan">Amitha Muraleedharan</name>
<name sortKey="Rotem Dai, Noa" sort="Rotem Dai, Noa" uniqKey="Rotem Dai N" first="Noa" last="Rotem-Dai">Noa Rotem-Dai</name>
<name sortKey="Strominger, Itai" sort="Strominger, Itai" uniqKey="Strominger I" first="Itai" last="Strominger">Itai Strominger</name>
<name sortKey="Strominger, Itai" sort="Strominger, Itai" uniqKey="Strominger I" first="Itai" last="Strominger">Itai Strominger</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33068318
   |texte=   Protein kinase C eta is activated in reactive astrocytes of an Alzheimer's disease mouse model: Evidence for its immunoregulatory function in primary astrocytes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33068318" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020